G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy.
نویسندگان
چکیده
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4-induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise.
منابع مشابه
ANG II is required for optimal overload-induced skeletal muscle hypertrophy.
ANG II mediates the hypertrophic response of overloaded cardiac muscle, likely via the ANG II type 1 (AT(1)) receptor. To examine the potential role of ANG II in overload-induced skeletal muscle hypertrophy, plantaris and/or soleus muscle overload was produced in female Sprague-Dawley rats (225-250 g) by the bilateral surgical ablation of either the synergistic gastrocnemius muscle (experiment ...
متن کاملRegulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice.
The heart initially compensates for hypertension-mediated pressure overload by enhancing its contractile force and developing hypertrophy without dilation. Gq protein-coupled receptor pathways become activated and can depress function, leading to cardiac failure. Initial adaptation mechanisms to reduce cardiac damage during such stimulation remain largely unknown. Here we have shown that this i...
متن کاملStretching the evidence in the case of cardiac growth.
Cardiac hypertrophy is not only an adaptive process in response to increased workload [l] but also one of the most important clinical complications of cardiovascular disorders. It is well known that a number of patients with cardiac hypertrophy develop heart failure, and that hypertrophy itself is one of the risk factors for an increased mortality rate [2]. Thus, understanding the molecular mec...
متن کاملThe IP3 receptor regulates cardiac hypertrophy in response to select stimuli.
RATIONALE Inositol 1,4,5-trisphosphate (IP(3)) is a second messenger that regulates intracellular Ca(2+) release through IP(3) receptors located in the sarco(endo)plasmic reticulum of cardiac myocytes. Many prohypertrophic G protein-coupled receptor (GPCR) signaling events lead to IP(3) liberation, although its importance in transducing the hypertrophic response has not been established in vivo...
متن کاملPressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice.
BACKGROUND Many studies have suggested that the renin-angiotensin system plays an important role in the development of pressure overload-induced cardiac hypertrophy. Moreover, it has been reported that pressure overload-induced cardiac hypertrophy is completely prevented by ACE inhibitors in vivo and that the stored angiotensin II (Ang II) is released from cardiac myocytes in response to mechan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 44 شماره
صفحات -
تاریخ انتشار 2014